
F. PARISI 579 

subset of second-order satellites in the former might 
invalidate the apparent equivalence of both results. 

Summarizing, we conclude that a less-favorable 
case could hardly be dealt with by the high-symmetry 
SSG description using the formalism as it stands in, 
for example, Yamamoto's REMOS. On the other 
hand, none of the above-stated problems appears 
when the correct structure-factor formula (20)-(21) 
for the high-symmetry SSG description is employed: 
no ambiguity appears in the indexing of the diffrac- 
tion pattern, no reflections must be ignored and no 
non-symmetry-imposed conditions result for the 
modulation functions. Thus, the advantages of 
employing a high-symmetry SSG description will be 
fully exploited in the resolution of commensurate 
modulated structures only after the proposed 
modifications to the structure-factor formula are 
taken into account. 

The author thanks Dr M. Benyacar and Dr R. 
Baggio for carefully reading this manuscript. 
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Abstract 
A new method for computation of X-ray multiple Bragg 
diffraction in perfect crystals is presented. The method 
is based on the extended dynamical diffraction theory 
and implies the reduction of the diffraction equations 
to a generalized eigenvalue problem. The advantage of 
the proposed approach is the possibility of decreasing 
the scattering-matrix size and simplifying the solution 
when some X-ray beams are not grazing. The boundary 
conditions are also simplified by the analysis of Bloch- 
wave structure inside the crystal and the proper selection 
of their polarization states. 

1. Introduction 
In recent years, application of  bright synchrotron 
radiation to a broad range of  X-ray experiments has 
aroused interest in X-ray multiple Bragg diffraction, 
giving us a new opportunity to measure the fine 
structure of multiple Bragg peaks. These measurements 
can form the basis for new methods of  studying 
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crystals and their surfaces (see Golovin, Imamov & 
Kondrashkina, 1985; Kazimirov, Kovalchuk, Kohn, 
Ishikawa & Kikuta, 1991; Kazimirov, Kovalchuk, 
Kohn, Kharitonov, Samoilova, Ishikawa, Kikuta & 
Hirano, 1993; Kohn, 1988; Kohn & Samoilova, 
1992; Kov'ev & Simonov, 1986; Stepanov, Kondrash 
kina & Novikov, 1991; Stepanov, Kondrashkina, 
Novikov & Imamov, 1994). However, they require a 
proper theoretical interpretation. 

The theoretical analysis of X-ray multiple diffraction 
in perfect crystals can be based on the dynamical diffrac- 
tion equations with respect to 2N wavefield amplitudes 
(the factor 2 is due to the vectorial nature of electromag- 
netic waves). As shown by Kohn (1976, 1979), these 
equations can be reduced to a simply soluble routine 
eigenvalue problem for a 2N x 2N scattering matrix. 

The problem becomes considerably more complicated 
if at least one X-ray beam grazes the crystal surface 
and consequently experiences specular reflection. These 
grazing cases are of special interest for crystal-surface 
studies. Also, accounting for specular reflection is often 
important in the rapidly developing optics of soft X-rays. 

Acta Crystallographica Section A 
ISSN 0108-7673 ©1994 
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Colella (1974) proposed a method of reducing the 
diffraction problem for grazing cases to a 4N x 4N 
scattering-matrix eigenvalue problem. We should note 
that ColeUa's work was a great achievement for that 
time. But we have now gained experience in two-beam 
grazing-incidence diffraction studies, which enables us 
to propose essential improvements to Colella's method. 
In particular: 

(1) As follows from diffraction physics in the N-beam 
diffraction case, there are not 4N but only 2(N + Ns)  
strong wavefields inside the crystal, where Ns  is the 
number of grazing X-ray beams. So, Colella's method 
may supply more solutions than are required. In fact, 
the unnecessary 2(N - N s )  solutions are later left out 
in his method during the analysis of boundary conditions 
for X-rays. However, we can obtain a considerable gain 
in the speed and the simplicity of calculations if we 
reformulate the eigenvalue problem for the 2(N + N s )  × 
2(N + Ns)  matrix. For example, in the case of eight- 
beam X-ray diffraction with only one grazing beam, 
we could operate with an 18 × 18 matrix instead of a 
32 × 32 one. A variant of the improved algorithm has 
been proposed by Stetsko (1990) but his approach is 
valid for cubic crystals only. 

(2) The eigenvalue problem was formulated by 
Colella for the parameter k / K  '-~ 1, where k and K 
are the magnitudes of X-ray wave vectors inside and 
outside the crystal. It is well known that the deviations 
of k / K  from unity by ,~ 10 -6 have a strong effect on 
the X-ray diffraction pattern. Therefore, the numerical 
computations in Colella's algorithm must be carded out 
with double precision, which is not necessary if we 
reformulate the problem using ( k / K  - 1). 

(3) Colella's method does not directly account for 
the change in the exit angles of grazing X-rays as a 
function of deviations from the Bragg condition. This 
strong effect is now well known from two-beam grazing- 
incidence diffraction studies (Afanas'ev & Melkonyan, 
1983; Aleksandrov, Afanas'ev & Stepanov, 1984b; 
Baryshevsky, 1976) and should be displayed in multiple 
diffraction as well. 

As a result of the above-listed drawbacks, Colella's 
method has not been used very often. Researchers 
have usually confined themselves to studies of par- 
ticular multiple-diffraction cases where an analytical 
approach was possible (Hung & Chang, 1989; Stepanov, 
Kondrashkina & Novikov, 1991; Tseng & Chang, 1990). 

In this paper, we propose a new algorithm for the com- 
putation of X-ray multiple Bragg diffraction accounting 
for the grazing beams. Our approach is based on the 
reduction of the diffraction problem to a generalized 
eigenvalue problem and is believed to be free from the 
noted shortcomings. 

In § 2, the formulation and solution of the diffraction 
problem inside a crystal are described. In § 3, we discuss 
the boundary conditions. § 4 contains several examples 
of testing computations and some conclusions. In the 

Appendix, we give formulae necessary for application of 
the proposed algorithm to experimental data processing. 

2. Solution of the diffraction 
problem inside a crystal plate 

As was shown by yon Laue (I 93 I), the X-ray wavefield 
inside the crystal in the case of N-beam dynamical 
Bragg diffraction can be represented as a superposition 
of N Bloch waves with wave vectors kh. Vector ampli- 
tudes Dh of these Bloch waves satisfy the following set 
of 2N linear equations (see, for example, details in the 
book by Pinsker, 1978): 

2 2 8 8' 8' 
- K~) / kh]D  h = ~ ~ Xhh,(e~h .eh,)Dh,.  (1) 

h' 8' 

Here, D~ and e~ are the amplitudes and unit vectors of 
the expansion of vectors Dh into two mutually normal 
polarization states: Dh = D~e~ + D~e~, e~ _l_ kh, 
e~ = [e~ x kh]/kh.  Indexes s, s'  = a, 7r denote the 
polarization states. Indexes h, h ~ -- 0 . . . . .  N - 1 list the 
reciprocal-lattice vectors h, h ~ involved in the diffraction 
process. The parameters Xhh' are components of the 
expansion of the crystal dielectric susceptibility in a 
Fourier series with respect to (h - h~). Kh and kh are 
the magnitudes of X-ray wave vectors outside the crystal 
and the respective Bloch-wave vectors inside the crystal. 
All the Kh have the same value owing to the wavelength 
preservation in Bragg diffraction: Kh = Ko - w. For 
the Bloch waves, the following condition is known to 
be satisfied: 

kh = k0 + h. (2) 

Equation (1) gives the principal oppommity to express 
all the wave amplitudes in terms of the incident-wave 
amplitude. Besides, N unknown parameters kh carl 
be found from ( N -  1) equations in the form (2) 
and the requirement for the determinant of (1) to be 
equal to zero. The latter provides nonzero solutions for 
the wavefield amplitudes and leads to a 4Nth-order 
polynomial equation with respect to k0. 

However, we know that the numerical solution of 
high-order polynomial equations is unreliable and in- 
expedient. Therefore, it is desirable to transform the 
problem to another form. This may be done by express- 
ing deviations of all kh from w with the help of one 
parameter. 

Consider the case of a plate-shaped crystal (Fig. 1), 
usual in X-ray diffraction optics. Let n be a unit vector 
along the internal normal to the upper surface of the 
plate. Then, the following equations can be written, 
owing to the preservation of the lateral components of 
wave vectors at the crystal boundary: 

k h  = K h  -F w e h n .  (3) 

Here, eh are dimensionless parameters, characterizing 
the refraction of X-rays at the surface. Usually eh ~-- 
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IXhh' I ~ 10-6 but for grazing beams the refraction effect 
increases to Ch "~ [Xhh' I 1/2 ~ 10 -3. 

Using (2) and (3) and the condition Kh = Ko, we 
obtain: 

Kh = Ko + h - wAchn,  (4) 

A C h  =- Ch --  C0 "-" --'Th "1- ('72 "4- O~h) 1/2, (5) 

where 
"Th = (Kh"  n) /w (6) 

are sines of the angles between the X-ray beams and the 
surface and 

ah = [(Ko + h)  2 - K2]/w 2 (7) 

are the deviations of the incident X-ray from the Bragg 
conditions for various h. 

So, we have expressed the deviations of all kh from 
w with the help of one small parameter ~0: k 2 = 
W 2 ( 1 - 4 - 2 " T h e h - 4 - e 2 ) ,  where 6h is related to c0 by 
(5). However, the derived equations contain the values 
"Th, which can vary considerably for grazing beams 
depending on C~h, as is known from two-beam grazing- 
incidence diffraction studies (Afanas'ev & Melkonyan, 
1983; Aleksandrov, Afanas 'ev & Stepanov, 1984b). To 
determine these variations, one has to evaluate the scalar 
products of both sides of (4) with n and then make use 
of (5) and (6). As a result, we obtain 

"72 = ('70 + '7~h)2 _ ~h ,  (8) 

where %oh = ( h .  n) /w = 2sin  69(B h) sin q0h, qOh is the 

angle between h and the surface and 69(B h) is the Bragg 
angle. 

As follows from (8), "Th can vary considerably only for 
grazing beams, where l'Thl < [Xhh' 11/2, as the variations 
o f  ot h in Bragg optics are IO~hl _~ IXhh'l. 

Let us denote 'Tin ___ "Tin(h) + "Ttph, w h e r e  ")tO Br(h ) 
"70 I'~h----0"* Then, (8) can be rewritten in the form 

"72 = (A'7o(h) + 'TBr)Z _ ah, (9) 

* The introduced parameter ")'h Br is "l-Th I~h=0. 

~ ~Bragg 
~ h  

]~Graz(R) 

~ h  

t I n ~ I 

Fig. 1. Schematic presentation of X-ray multiple diffraction in a crystal 
plate. 

where A'70(h) = '70 -- '70 re(h) determines the possible 
change in the incident angle when the incident beam 
deviates from the exact Bragg position for h. All  '70 Br(h) 
may coincide if the incident beam can simultaneously 
satisfy the Bragg conditions for all reciprocal-lattice 
vectors involved in the multiple diffraction. Then, we 

,. Br(h) "TBr have ~o = and A'7o(h) =A'7o. This is always the 
case for two- and three-beam scattering. 

Using (9) and (5), we obtain 

"- --'Th 4-[A'70(h) -4" "TBr. (10) Aeh 

To clarify the sign in (10), one can substitute the right- 
hand side of (10) into (4) and consider the particular 
case ah = 0. The sign must be positive if "TBr > 0 and 
negative if "Th m < 0. Therefore, we can write 

Aleh = A'7o(h) + ('Th Br -- "Th). (11) 

Substitution of (3), (4) and (11) into the left-hand side 
of (1) yields 

(k 2 - K 2 ) l k  2 = eo 2 + 2¢0('7h m +/1")'0 (h)) + ah. (12) 

On the basis of (12), the diffraction equations (1) may 
be written in the form 

E E  g'2_ss' 1qs' "-'hh"-"h' = {2(')' s r  + AT(oh))eO + ¢2}D~, (13) 
h '  8 t 

where 
G 8 8  __  ~ E88  ! 8 ! 

hh' - -  - - tXhUhh'  "~ X h h , ( e ~  " e h ,  ) (14) 

is the scattering matrix. As we have already noted, the 
maximum order of the parameter e0 is e0 < [Xhh' 11/2 '~ 
~/ic, where ~5c = Ixo11/2 is known to be the critical 
angle of X-ray total extemal reflection. Therefore, the 
terms with e 2 in the right-hand side of (13) can be 
neglected for the beams satisfying the condition 1'Thl > >  
4i~. As a result, in the absence of grazing beams the 
diffraction problem is reduced to the generalized eigen- 
value problem G D  = e0(2F)D,  where G and 2 F  are 
square matrices and e0 and D are the eigenvalue and 
eigenvector of interest. If the equations are divided by 
2"7h, the generalized eigenvalue problem is reduced to 
the usual one: G ' D  = e0D, discussed previously by 
Kohn (1976, 1979). 

In the case of grazing X-ray beams, the solution of 
(13) becomes more complicated as the terms with e~ 
must be taken into account. Nevertheless, these equa- 
tions can also be linearized by enlarging G and D.  

Let the number of grazing beams be Ns  (0 < Ns  < 
N),  the number of Laue-case beams be NL and the 
number of Bragg-case beams be NB ( Ns  + NL + NB = 
N).  Also, let the beams be sorted in decreasing order 
over "7h. Then, the first 2NL equations on the right- 
hand side of (13) contain large '7h > 0, corresponding 
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to Lane-case beams. The subsequent 2Ns equations 
contain small 7h (grazing beams) and therefore keep 
e g terms. Finally, the last 2Ns  equations with ~/h < 0 
(Bragg-case beams) are again linear with respect to e0. 
Consequently, (13) can be represented in the following 
matrix form: 

GD = eo(2F)D + eo2PPD, (15) 

91"~ss' - -  2('yhBr'-~-A"/0(h))t~, is a diagonal matrix, where ~,~t hht 
P is the rectangular 2N × 2Ns projection matrix: 

9NL 9.Ns 9.NL 

(16) 

I is the unit diagonal matrix, the O are zero rectangular 
matrices and P is the transposed matrix of P.  

Introducing the 2Ns component vector Ds :  

Ds = eoPD, (17) 

we can rewrite (15) in the linear form 

CD = eo[(2F)D + PDs]. (18) 

Finally, (17) and (18) can be represented as one matrix 
equation: 

G O ) ( D - ~ )  (19) 
O " 

Now, the problem of X-ray N-beam dynamical Bragg 
diffraction is reduced to the generalized eigenvalue prob- 
lem for this 2(N + Ns)  x 2(N + Ns)  scattering matrix. 
The numerical solution of this problem is simply imple- 
mented because the respective algorithms are included in 
the majority of mathematical libraries (see, for example, 
NAG, 1980). We consider that the computation rate of 
the new method in some cases can be significantly faster 
than the one provided by Colella (1974) owing to the 
smaller matrix size. 

The numerical solution of (19) brings 2(N + Ns)  

branches of e(0 j) and (D(J),D(~)). * To determine the 
contributions of different D (j) to the total X-ray wave- 
field, we apply the boundary conditions. 

3. Boundary conditions 

The X-ray wavefield inside the crystal for every hth 
X-ray beam can be represented in the form 

2(N+Ns) 
z~(r)  = E 

j=l 
CjDh (j) exp (ik (j). r), (20) 

* The components D~ ) are not of physical interest and can be 
immediately excluded from consideration. 

where Cj is the excitation coefficient of the j th solution; 
- 

It is shown in (20) that the intensity of each diffracted 
beam contains the contributions of all solutions. This 
interference displays the multiple-diffraction interaction. 
However, it can be proved that there exists a strict 
connection between the numbers of Laue-case, Bragg- 
case and grazing-case beams and the types of e(0 j). 
Namely: 

(i) every Laue-case beam (including the incident one) 
provides two solutions (accounting for two polariza- 
tion states) with slowly decreasing amplitudes along n: 
Im e~ j) > 0; 

(ii) every Bragg-case beam provides two roots with 
slowly increasing amplitudes along n: Im e(o j) < 0; 

(iii) every grazing beam provides two solutions with 
strongly increasing and two solutions with strongly de- 
creasing amplitudes. 

Kohn (1991) based his arguments on this statement 
for multiple diffraction without grazing beams. Alek- 
sandrov, Afanas'ev & Stepanov (1984a) proved this 
mathematically for two-wave grazing-incidence diffrac- 
tion. The simplest argument is that the solutions describe 
Bloch waves and there should exist a Bloch wave 
propagating along every beam outside the crystal. 

So, in total, we have: 
(A) 2Ns roots with large Im e(0 j) > 0, 
(B) 2NL roots with small Im e(o j) > 0, 
(C) 2NB roots with small Im e (~) 0. < 0 ,  
(D) 2Ns roots with large Im e(0 j) < 0. 
For convenience, we suppose the roots are sorted 

in the sequence above. Consider a crystal of practical 
thickness (e.g. t >__ 10/tm), so that the roots of classes (A) 

and (D) satisfy the condition Ime(o j) ~ t  > >  1. In this 

case, the last 2Ns roots with large Im e(0 j) < 0 can be ex- 
cluded from consideration because the respective Bloch 
waves display large amplitudes at the lower boundary of 
the plate that are not physically real.* So, the respective 
2Ns excitation coefficients Cj are assumed equal to 
zero. 

As the solutions of class (D) are not excited, we have 
to put only 2Ns + 2Ns + 2Ns + 2NL + 2NB = 2N 
boundary conditions for the determination of the other 
2N coefficients C (j). Let us consider these conditions 
separately for three types of beams. 

3.1. Laue-case beams 

The intensity of Laue-case beams at the upper (en- 
trance) surface of the crystal plate is equal to unity for 

* However, this does not imply that the grazing beams are not able to 
leave the plate through the lower boundary because their total wavefield 
determined by (20) contains the contributions of the other solutions. See 
also the works by Kishino (1971), Kishino, Noda& Kohra (1972) and 
Hartwig (1976) concerning this problem. 
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the incident beam and to zero for other beams. Therefore, 
the following 2NL equations can be written: 

2N 
7)~(0) -- y~ CjOSh (j) = t~h0COS Aq0s, (21) 

j=l  

where A~o8 are the angular deviations of the incident- 
wave polarization plane from e~. 

3.2. Bragg-case beams 

Similarly, the intensity of Bragg-case waves at the 
lower boundary of the plate is also equal to zero (another 
2NB equations):* 

2N 
V~(t) = E C~D~ O) exp(iwe(0~)t) = 0. (22) 

j = l  

where the matrix F~ (j) is given by 

Da< j) 

F~(J)= Di (j) exp(iwe(J)t) 

nSh(J) (~hO + e(J)/270) 

3.3. Grazing beams 

The boundary conditions for grazing beams are set 
at both upper and lower surfaces. The conditions at the 
upper surface consist of 2Ns equations for X-ray electric 
fields and 2Ns equations for their derivatives. The latter 
conditions appear because of accounting for refraction. 
Now, there are 4Ns conditions, but they contain 2Ns 
unknown amplitudes Eh (n) of vacuum grazing beams 

above the surface. Excluding Eh (R), one can arrive at 
2Ns equations derived by Colella (1974). Please note 
that these equations are considerably simplified if vectors 
e~ of the grazing waves are chosen parallel to the crystal 
s~trface (see, for example, Aleksandrov, Afanas'ev & 
Stepanov, 1984b). In this case, we have 

2N 

~_, CjDh(J)(rhO + e(hJ)/270) = dih0 c o s A ~ .  (23) 
j = l  

The number of conditions at the lower boundary is 
also equal to 4Ns but the conditions for the wavefields 
and their derivatives coincide because the wavefields do 
not include class (A) ('grazing') solutions at the lower 
boundary owing to their strong damping. As a result, 
we have only 2Ns equations, which determine 2Ns 
amplitudes Eh (T) of vacuum grazing beams below the 
boundary and do not provide the additional conditions 
for  C j .  

Thus, the total set of boundary conditions consists of 
2N equations. They can be presented in the form of one 
matrix equation: 

2N 
~_, CjF~ (j) = 6hO cos Ago., (24) 

j = l  

* lWe can exclude a part of the 'Bragg-case' solutions satisfying 
the condition: Ime(oJ)wt < <  - 1 ,  if the crystal is sufficiently thick. 
Simultaneously, the boundary conditions for the respective number of 
Bragg-case beams with the smallest (i.e. the closest to grazing) 7h are 
also excluded. This is the same procedure as for class (D) ('grazing') 
r o o t s .  

for Laue-case 
b e a m s ,  

for Bragg-case 
beamS,  

for grazing 
beams. 

(25) 
Equations (25) can be solved numerically by the 

Gaussian method.* 
If the Cj are found, the reflection coefficients of 

vacuum X-ray waves are evaluated according to the 
formulae 

eh --  ( I R e ' ) ' h l / ~ ' 0 ) E  I ~ g ( z )  - 5h05z0 cosAqosI 2, (26) 
8 

where z = 0 for the beams leaving the crystal through 
the upper (entrance) surface and z = t for the transmitted 
beams. Equation (26) is applied to Bragg-case beams 
at the upper surface, to Laue-case beams at the lower 
surface and to grazing beams at both surfaces. 

4. Numerical examples and discussion 

The proposed method has been implemented in a pro- 
gram computing three- to eight-beam X-ray diffraction 
and some test computations have been carded out. 

In the absence of grazing beams, the results of the 
program coincide completely with those of Kohn (1976, 
1979). Therefore, let us consider the grazing cases, 
where testing is more complicated. 

Results from computations for three-beam X-ray re- 
flection 000, 220, 202 from a germanium crystal plate 
with (i 11) surface orientation are shown in Fig. 2. The 
selected wavelength, A = 3.463683 A, provides coplanar 
diffraction geometry where all the beams graze along the 
crystal surface. That is the case considered by Hung & 
Chang (1989) within an analytical formalism. 

In Fig. 2(a), the computations are carded out for 
~22o - a2o2 = lOOlxol. In this case, the rocking 
curve for beam 000 displays the shape of the X-ray 
specular reflection curve from amorphous material. This 
is reasonable because the reflections 220 and 202 are not 
excited significantly owing to the large a. The reflection 
coefficients for 220 and 202 are equal to zero because 
neither of these beams can leave the crystal owing to 
the total intemal reflection effect [as follows from (8), 
parameters 7220 and 7202 are imaginary numbers]. 

Fig. 2(b) presents the computations for a920 = 0 and 
a202 = 1001x0[, i.e. practically for two-beam diffraction. 
Respectively, the curves 000 and 220 in the figure 

* The boundary conditions for a very thin crystal are formulated 
identically but with account taken of the refraction of the grazing waves 
at the lower boundary. As a result, 2 ( N + Ns ) conditions for 2 ( N + Ns ) 
values e (j) are obtained. 
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coincide with the calculations based on two-beam theory 
by Afanas'ev & Melkonyan (1983) and Baryshevsky 
(1976). In particular, the angular dependence for 000 dis- 
plays the two-threshold specular reflection effect noted 
by Baryshevsky (1976). 

Finally, the computations in Fig. 2(c) are carded out 
for the case o~220 = a202 = 0, when both 220 and 
202 are excited simultaneously. We see that the two- 
threshold effect of the specular reflection is enhanced by 
three-beam diffraction. At the same time, the intensity 
maxima for 220 and 202 are decreased because these 
reflections 'share' the incident intensity. 

The computations presented correlate in general with 
the data of Hung & Chang (1989). Some deviations are 
due to the accounting for absorption in our data being 
different from that of Hung & Chang (1989). 

Concluding, we can state that the method has been 
implemented and tested. We believe that it can be suc- 
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Fig. 2. Rocking curves of three-beam grazing-incidence diffraction 000, 
220, 202 in germanium. 

cessfully used in applications of X-ray multiple diffrac- 
tion to crystal-surface studies and in multibeam optics 
of soft X-rays. Additionally, it is applicable to studies 
of reflection high-energy electron diffraction. 

The authors are pleased to acknowledge Mrs J. 
Nowikow and Dr R. Garcia for very helpful discussions. 

A P P E N D I X  

Here, we give some equations that are useful for the 
application of this algorithm to experimental data pro- 
cessing. 

We present the incident wave vector in the following 
form: 

K0 = Kom{1 - [(02 +02)/21} +w(al01 + a202). (27) 

Here, Ko m is the wave vector satisfying exact Bragg 
conditions for hi  and h2; 01 and 02 are the angular 
deviations of K0 from Kom; al  and a2 are the unit 
vectors specifying the directions of variations of these 
angles in the experiment {aa 2_ ko, a2 = (al x ko)/w]. 

Substituting (27) into (7) and (8), we obtain 

OLh --" O~h Br + [2(al .  h)/wlOa -t- [2(a2. h)/w]02 

+ 2sin 2 69(s h) (012 + 0~), (28) 

% = ~'~ + (ax. n)01 + (a2-n)02,  (29) 

where o~ Br = O, O~ B r  "-- O,  O~ B r  --" [ ( K B r + h n ) 2 - K 2 ] / w  2, 
hi h2 hn 

n > 2 .  
Equations (27) and (28) are applicable to the simu- 

lation of multiple-diffraction experiments irrespective of 
the presence or absence of grazing beams. 

Note that the quadratic terms in 0 are included in (27) 
in view of possible large-scale variations of these angles. 
To illustrate this, let us consider the example analyzed 
in § 3 and choose the direction of 01 variations to be 
along the surface (aa = [n x ko]/w). Then, 02 is varied 
parallel to the surface and one can easily find 

Cth -- 2sin 2 E)(sh)02, 

'~0  " -  '~0 B r  "3 L 0 2 .  
(30) 

These equations show that the variations of the incidence 
angle cause the changes in all ah due to 02 terms. 
Therefore, a straightforward measurement of the curves 
presented in Fig. 2 is not possible. This fact has been 
noted by Stepanov (1991). 
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Abstract 

A probabilistic approach is described that is able to 
estimate triplet phase invariants when prior informa- 
tion on interatomic vectors and interatomic triangles 
is available. The conclusive formula is compared 
with the vector-interaction formula derived by 
Hauptman & Karle [Acta Cryst. (1962), 15, 547-550] 
and with a probabilistic formula obtained via 
maximum-entropy methods. 

Symbols and abbreviations 

The papers by Giacovazzo (1991) and Altomare, 
Cascarano & Giacovazzo (1992a,b) are referred to as 
papers I, II and III, respectively. Symbols and 
abbreviations are the same as those used in these 
papers. 

Introduction 

In paper I of this series, the standard method of joint 
probability distribution functions was modified in 
order to exploit the information provided by a 
Patterson map. If interatomic vectors uj, j~ = rj,-rj~ 
are known a priori, the symmetry-independent 
atomic positional vectors cannot be considered as 
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random variables uniformly distributed in the asym- 
metric unit (indeed, rjl is completely determined in 
terms of rj, and uj, j~). The theory provided triplet 
invariant estimates different from those provided by 
standard methods. The formula requires prior 
information both on the coordinates of the peaks 
and on the scattering factors of the atoms with 
mutual distance u. Since this second type of informa- 
tion is usually unavailable (for example because of 
peak overlapping), in paper II the formula was 
modified to depend on u and on the corresponding 
Patterson peak intensity. Some applications were 
also described. 

In paper III, the theory was extended to introduce 
the information contained in Harker sections. 

The main aim of this paper is to describe a proba- 
bilistic approach for triplet invariant estimation that 
is able to exploit the information contained in the 
interatomic triangles. This type of information 
includes prior knowledge of interatomic vectors and 
also takes into account correlation among different 
interatomic vectors. The problem is correlated with 
the double Patterson function (Sayre, 1953; Kroon & 
Krabbendam, 1970) and a first answer was found in 
an algebraic expression derived by Hauptman & 
Karle (1962) for the calculation of triplet phases 

Acta Crystallographica Section A 
ISSN 0108-7673 ©1994 


